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ABSTRACT

Spectral imagery offers additional information about a scene that can enhance an

analyst’s ability to conduct change detection.  Automation of change detection is required

to sift through countless images to identify scenes that have significant intelligence value.

Change detection in spectral thermal imagery enables exploitation at night by taking

advantage of the emissive characteristics of materials.   Data collected from the Spatially

Enhanced Broadband Array Spectrograph System (SEBASS) were used to investigate the

feasibility of spectral thermal change detection in the long wave infrared (LWIR) region.

This study used analysis techniques of differencing, histograms, and principal

components analysis to detect spectral changes and investigate the utility of spectral

change detection.  Many artifacts can influence the sensitivity of change detection

methods.  Temperature dependence and gross registration errors greatly affect an analysts

ability to make use of spectral thermal data for change detection; however, with effort,

spectral changes were still detected with these data and suggest that the techniques would

be useful once the undesirable characteristics are minimized.
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I. INTRODUCTION

Imaging spectroscopy, the collection of spectral information displayed in spatial

form, has widened prospects for image exploitation and intelligence collection and

analysis.  Broadband images often fail to provide sufficient information to discriminate

low contrast targets that might be employing concealment techniques.  To date, studies in

spectral imagery have explored the detection of anomalies (i.e. the presence of an

unnatural objection in a natural background).  This would allow the analyst to quickly

locate concealed targets by exploiting one image at a time.  While many would argue that

anomaly detection is sufficient for most military applications, it will only partially reduce

the increasingly unmanageable amount of imagery data.  To check all anomalies every

time they appear in an image would still require a great deal of analyst effort, yet most of

those anomalies will not require repeated analysis – unless something about that anomaly

changes.

For example, an analyst might be responsible for monitoring the operational status

of several ground combatant facilities in a country that is known for a very slow

operational tempo.  On most days, the majority of military vehicles remain in place

indicating no change in operational status; however, each vehicle is considered an

anomaly compared to the parking areas, dirt, and vegetation.  A reasonably intelligent

adversary would attempt to increase operational tempo undetected by replacing each unit

with a similar-looking decoy so that no major change is noticed on broadband imagery.

The subtle spectral difference may also be overlooked by an analyst who still detects an

object that differs little from the past several months.  However, if the proper change

detection algorithm were employed in this scenario, the analyst would need to spend little

time and effort on scenes where little change occurs.  Such algorithms could be sensitive

to subtle spectral changes which would prompt the analyst at the proper time to take a

closer look at the scene.  This would significantly reduce the requirement for in-depth

analysis on every scene while improving the analyst’s ability small but anomalous

changes.
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Similar examples exist in power plant configuration, chemical and biological

weapons production, and many other areas in which imagery analysts spend an inordinate

amount of time.  As the number of targets and the amount of data available for each target

increase, interpretation must be streamlined and automated freeing the analyst to

investigate images of potentially significant intelligence value.   Change detection

provides a means for eliminating null target areas – areas in which activity is minimal or

does not fit a predetermined profile.  Spectral change detection provides the added

sensitivity to the change detection process reduces vulnerabilities to camouflage,

concealment, and deception (CC&D) techniques.

This study begins to investigate the feasibility of hyperspectral change detection in

a military context.  It focuses on the ability to employ these methods with hyperspectral

imagery collecting in the long wave infrared (LWIR) region of the spectrum.  This region

comes with a set of unique characteristics and challenges, including a dependence on

target temperature.  The single most important characteristic is that thermal sensors do

not require daylight for operation thus enabling spectral image collection at night.

However, the thermal dependence may complicate spectral analysis and reduce the

sensitivity of change detection techniques.  Also, the spectral features of interest in

military operations are more subtle in the LWIR than in the reflective regions of the

spectrum such as visible, near infrared (NIR), and short-wave infrared (SWIR).

This study examines change detection techniques currently used in broadband

multispectral imagery and summarizes their effectiveness in previous studies.  Next an

overview of the MWIR/LWIR sensor, the Spatially Enhanced Broadband Array

Spectrograph System (SEBASS), is provided.  The study consists of data from two

collects: the Capabilities and Requirements Development of the SEBASS High Altitude

Reconnaissance Project (CARD SHARP) and two consecutive overflights of the Camp

Pendleton Marine Corps Air Station.  The CARD SHARP data provide insight to the use

of spectral change detection of camouflaged vehicles in a heavily vegetated environment.

The Camp Pendleton data provide similar insight in a military industrial environment.

These data are evaluated for their utility with respect to change detection and aid in the
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characterization of problems associated with thermal hyperspectral data with regard to

change detection.

The quality of both data sets prohibited side-by-side comparisons of a variety of

techniques previously used in multispectral analysis.  Instead, the focus of this study is on

the sensitivity of the instrument to detect spectral change separate from thermal change in

two different collection environments.  It also investigates useful ways to detect, identify,

and analyze spectral change.  Finally, this study will attempt to assess the feasibility of

thermal hyperspectral change detection and characterize requirements in signal-to-noise

ratio and registration accuracy that would greatly improve the change detection process.
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II. BACKGROUND

A. SPECTRAL ANALYSIS

To understand spectral change detection, it is import to first review the

development of hyperspectral analysis.  Most of the current analysis techniques have been

adapted from mulitspectral analysis and the analysis of three-dimensional matrices.

Stefanou (1997) applied a signal processing perspective to hyperspectral analysis

and catalogued 18 different techniques organized into families based on the amount of a

priori knowledge required for each technique.  His work is summarized in Appendix A.

Certain spectral analysis techniques are well suited for change detection.  This section

will cover those techniques.

For illustration purposes, this chapter will use Landsat TM images to provide a

consistent comparison of all techniques explained here.  The images used are of Boulder,

Colorado taken in August and October of 1985.  They have been subsetted to the same

1000 x 1000 pixel scene (Figure 2.1).  A color version of this figure is available in

Appendix B.  Band 6, the LWIR band, has been omitted.

Figure 2.1:  A subset of two Landsat TM images of Boulder,
Colorado are used as examples in this chapter.
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1. Principal Components Analysis (PCA)

Since redundancy exists between spectral bands in a hyperspectral image,

principal components analysis (PCA) seeks to transform the observed spectral axes to a

new coordinate system ordered according to variance (Stefanou, 1997).  The transform

decorrelates the original information and orders the bands in a way that allows the

information to be represented by a smaller number of bands.

PCA uses the Karhunen-Loeve Transform (KLT) which expands the data set as a

weighted sum of basis functions.  These basis functions represent the eigenvectors of the

covariance matrix of the data set.  Therien (1992) describes the discrete form, the DKLT,

as following the relation,

κ ϕi i
n

N

n x n= ∗

=

−

∑
0

1

(2.1)

where κi are coefficients of orthonormal basis function, ϕ i n , and x[n] is a random

sequence of n = {0,1, …  ,N-1} such that

x n n n nN N= + + +κϕ κ ϕ κ ϕ1 1 2 2 L (2.2)

The basis function, ϕ i n , is orthonormal when it satisfies the relation

ϕ ϕi j
n

N

n n
i j
i j

∗

=

−
=

=
≠

RST∑ 1
00

1    
  

(2.3)

Figure 2.2 depicts the DKLT.  The basis funtions, ϕ i n , represent the eigenvectors of

x[n] each weighted by the principal component scores κi (Stefanou, 1997).



7

Figure 2.2:  A graphical depiction of the eigenvectors produced
from a DKLT (from Therrien, 1992).

The basic PCA uses eigenvectors of the covariance matrix to create a unitary

transform matrix.  This matrix is applied to each pixel vector and transforms it into a new

vector with uncorrelated components ordered by variance (Stefanou, 1997).  Because

PCA depends on scene variance both spectrally and spatially, results depend on features

specific to each scene.  As certain features differ in a given scene, certain principal

components will change while others may not.  Figure 2.3 contains the six principal

components for the August Boulder image.  The bands are numbered such that one is the

most significant band (has the highest eigenvalue).

It is also important to note that the first several  principal component (PC) bands

carry the most information about scene variance; however, they may not always carry the

information of interest.  The signal-to-noise ratio (SNR) is not the same in all bands

which can obscure information in higher PC bands.  To improve this situation,

standardized principal components analysis (SPCA) was introduced.  SPCA causes each

spectral band to contribute equal weight by first normalizing the covariance matrix.  This

transforms the covariance matrix to the correlation matrix.  Figure 2.4 contains the six

standardized principal components from the August Boulder image.
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Figure 2.3:  Principal component transform a 6-band Landsat TM
image of Boulder, Colorado acquired in August, 1985.
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Figure 2.4:  Standardized principal components produced from the
same Landsat image in Figure 2.3.
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2. Spectral Angle Mapper

Spectral angle mapper (SAM) measures the spectral similarity between a

reference spectrum and the spectra found at a pixel of the image.  This assumes that the

spectrum of interest is abundant in a given pixel to the extent that it adequately matches a

pure reference spectrum.  Spectral similarity is manifest as an angle between the pixel

vector and the vector of the reference spectrum.  This is illustrated in Figure 2.5.
B

an
d 

2

Band 1

Spectral Angle

Observed Vector

Reference Vector

Figure 2.5:  A graphical illustration of the spectral angle for a two-
band example (after Collins, 1996).

Yuhas, Goetz, and Boardman (1992) express the spectral angle, in radians, as

cos cos− − =

= =

•F
HG

I
KJ=

F

H

GGGG

I

K

JJJJ
∑

∑ ∑
1 1 1

2

1

2

1

x u
x u

x u

x u

i i
i

l

i
i

l

i
i

l
(2.4)

Where x is the observed pixel vector and u is the reference vector.  The dot product of x

and u are divided by the product of their Euclidean norms to cancel out the amplitude

difference of the two vectors.

The output of a SAM algorithm is a multiband image where the number of bands

equals the number of reference spectra used in the algorithm.  Pixel brightness indicates

the degree of similarity of the pixel to the given reference spectrum.  SAM tends to
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perform independent of scene illumination and sensor gain (Collins, 1996), but its

deterministic approach ignores the natural spectral variability of a species and spectral

shifts caused by atmospheric contaminants.

B. THERMAL ANALYSIS

Thermal data come with their own set of characteristics and problems that require

specific attention when applying techniques developed for other regions of the spectrum.

The first is that radiation from an object is dependent upon temperature.  This is

expressed in Planck’s Radiation Law.

Bλ T( )= C1λ− 5

e
C2

λT − 1
(2.5)

Where B T( ) is the radiance emitted from a blackbody, C1 and C2 are constants

(1.191×1010 µW/cm2µmsr, 1.143×104 µmK respectively), λ is the wavelength of the

radiation observed (in microns), and T is the temperature of the blackbody in degrees

Kelvin.

  Most issues surrounding thermal data are centered on the confounding of

temperature with emissivity.  Emissivity is the ratio of the emitted radiance of a real

object to that of a blackbody radiating at the same temperature.  Equation 2.8 describes

the relationship of temperature and emissivity.

L = τλελBλ T( ) (2.6)

Where L is the radiance at the sensor contributed by the observed object and ε is the

object’s emissivity.  The radiance of the material is also attenuated by the atmospheric

transmittance, τλ.

Temperature has a dramatic effect on an object’s emitted radiance, and therefore

makes it difficult to distinguish the type of material observed from its temperature.  It

then becomes important to separate the two variables by estimating the blackbody

radiance and dividing it from Equation 2.6.  Before this can be accomplished, we must
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estimate the effects of atmospheric attenuation and sources of radiation that reach the

sensor not related to the obect’s emission.  Total at-sensor radiance can be expressed as

( ) ( )
434 21444 3444 21434 21

Sensor at the
Radiance Upwelling

Sensor at the
Radiance gDownwellin

Sensor at the
RadianceObject 

0.1 upwellinggdownwellinsensor LLTBL +−+= λλλλλ ετετ (2.7)

In addition to the object radiance, radiance from the atmosphere itself contributes to the

total at-sensor radiance.  Figure 2.6 illustrates the process of thermal radiative transfer.

τλ

el Bλ(T)

LDownwelling

LUpwelling

τλ el Bλ(T)+ τλ (1.0-el) LDownwelling 

Figure 2.6:   A diagram of the components of emitted radiation reaching the sensor.

To compensate for the atmosphere, Hackwell and Hayhurst (1995) developed the

plastic ruler technique specifically for infrared hyperspectral remote sensing.  This

technique assumes an emissivity of 1.0 for some key scene elements thus eliminating the

downwelling radiance contribution in Equation 2.9.  Collins (1996) provides a more

detailed description of the plastic ruler atmospheric compensation technique.  In order to

accurately use this technique, blackbody emitters with known temperatures must be

present in the scene.  Vegetation is typically used as a blackbody emitter.  Once

atmospheric compensation is complete, Plank’s Law (Equation 2.7) can be used to

determine the temperature of every pixel in the image.
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C. MULTISPECTRAL ANALYSIS

Much of the current research on change detection has been applied to

multispectral imagery in the context of environmental monitoring.  Studies usually focus

on a single technique that seems suited to a specific application such as coastal zone

monitoring (Weismiller, et al, 1997) or land cover change (Suga, et al, 1993).  What

follows is a description of several change detection techniques that frequently appear in

the literature and may have application to hyperspectral imagery.

1. Image Differencing

The earliest techniques for comparing two co-registered images acquired at

different times has been to perform a point-to-point subtraction.  Singh (1989) describes

the operation as

Dx x t x t Cij
k

ij
k

ij
k= − +2 1b g b g (2.8)

where Dxij
k  is the difference between the images at times t1 and t2 of pixel value x at i,j.

The superscript, k, represents the spectral band and C is a constant used to prevent

negative digital numbers.  This produces a difference distribution (Figure 2.7) for each

band where areas of change are found in the tails of the distribution while areas of no

change fall near the mean.  The change threshold is often established by specifying the

number of standard deviations from the mean.
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Change Change

No
Change

Figure 2.7:  A histogram of the differenced image in Figure 2.8.

Figure 2.8 illustrates this technique.  Band 4 is shown for August and October in

the top two panels, and the difference is shown in the bottom panel.  The difference panel

has been scaled from –128 to 128.  Note that bright areas in the change image represent

areas of increased radiance from August to October, and dark areas represent decreased

radiance.  While it may be useful to threshold the image to highlight the changes, not

doing so provides a better view of the degree of change.  Note the light region around the

reservior, which has decreased in size.

Image differencing is the simplest and most widely used of all techniques (Singh,

1989); however, a number of disadvantages accompany the method.  Differencing

requires precise registration and does not account for the existence of mixed pixels.  It

usually fails to consider the starting and ending point of a pixel in feature space.

Differencing often loses information.  For instance, two differenced pixels can have the

same value (degree of change), but this says nothing about the type of change that has

occurred (Riordan, 1980).  For instance, a change of 40 may be caused by differencing

two pixels from 160 to 120 or from 90 to 50.  If might be difficult to determine if a lake

had receded or urban development had increased.
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August 85, Band 4

October 85, Band 4

Difference: October - August
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Figure 2.8:  Image differencing as applied to Landsat TM images
of Boulder, Colorado acquired on August and October, 1985.
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2. Image Ratioing

Similar to differencing, image ratioing is a point-to-point operation that compares

two images by dividing one by the other.  Singh (1989) expresses ratioing as

Rx
x t
x tij

k ij
k

ij
k= 1

2

b g
b g (2.9)

Where Rxij
k  is the ratio of pixel i,j at times t1 and t2.  When Rxij

k = 1 , no change has

occurred in that pixel.  When Rx Tij
k > , where T is a predetermined threshold, a change

has occurred in that pixel.

Unlike differencing, the ratio distribution is non-normal as shown in Figure 2.9.

This would mean that change thresholds are seldom equal on both sides of the

distribution.  If standard deviations are used to determine the thresholds, then the “areas

of change” under the distribution curve are not equal, therefore the error rates above and

below unity will not be equal.  For this reason, ratioing is seldom used.  Figure 2.10

depicts image ratioing.  Even though a ratio of 1.0 indicates no change, it does not fall on

the middle gray value.

Figure 2.9:   The histogram for ratio band 4 of the Boulder scene.
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Figure 2.10: The same Band 4 images used in Figure 2.8 applied to
ratioing.  Note that the center of the ratio scale is not 1.0.
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3. Index Differencing

Image differencing compares single bands but does not account for relationships

between bands.  In order to take advantage of these relationships, an index is created by

combining two or more bands into one value.  Tucker (1979) introduced vegetation

indices which are the most widely used in remote sensing today.  A vegetation index

takes advantage of the IR ledge, the high radiance difference between visible and near

infrared wavelengths.  Tucker (1979) used Landsat MSS to create three vegetation

indices:

Ratio Vegetation Index = Band 4
Band 2

(2.10)

Normalized Vegetation Index = Band 4 -  Band 2
Band 4 +  Band 2

(2.11)

Transformed Vegetation Index = Band 4 -  Band 2
Band 4 +  Band 2

 
 

 
 + 0.5 (2.12)

Band 4 is the near infrared band (0.8 – 1.1 µm) and band 2 is the red band (0.6 – 0.7 µm).

All three of these indices are commonly used today.  The normalized vegetation index is

often referred to as Normalized Differenced Vegetation Index (NDVI).

Index differencing is also a point-to-point operation where the indices (instead of

raw pixel values) are subtracted from one another.  Index differencing negates the effect

of multiplicative factors acting equally in all bands such as topographic effects and

temperature differences (Lillesand and Kieffer, 1987) and has the advantage of

emphasizing differences in spectral response curves.  The main disadvantage with index

differencing is that it can enhance random or coherent noise not correlated in different

bands (Singh, 1989).  A generalized form of index differencing would be expressed as

DRij =
xij

k t1( )
xij

l t1( )−
xij

k t2( )
xij

l t2( ) (2.13)

Where DRij is the index difference of two ratios of bands k and l for pixel i,j of images at

times t1 and t2.
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Michener and Houhoulis (1997) used NDVI differencing for vegetation changes

in flooded areas with a high degree of success.  They note that, “Interpretability could

potentially be facilitated by transforming raw spectral data to an appropriate ratio index

that may be correlated with a specific type of change.”  Creating an appropriate index

allows the analyst to emphasize the changes that are important which could inherently

reduce erroneous detections caused by changes that are not considered significant.  This

technique, however, requires a priori knowledge about the types of changes of interest.

Figure 2.11 demonstrates NDVI differencing for the Boulder scene.  The result is

similar to other techniques; however, changes in vegetation are more pronounced.  Of

particular interest are the fields in the top right corner.  The health of the fields appear to

have decreased from August to October which is indicated by a low pixel value.
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August 85, NDVI

October 85, NDVI

Difference: October - August
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Figure 2.11:  NDVI differenced image of the Boulder scene.
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4. Principal Components Analysis

Several approaches to PCA are available for change detection.  The first approach

is the most straight forward.  Each image is transformed into its principal components.

Then a selected band from each image can be compared using other change detection

techniques such as differencing.  Figure 2.12 illustrates the progression of this method,

and Figure 2.13 apply the technique to the Boulder scene.

Image
1

Image
2

PCA
2

PCA
1

Differencing or
Regression Result

Figure 2.12.  Principal components analysis where band-by-band
differencing is used.
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Figure 2.13:  Differenced principal components bands of the Landsat Boulder image.
Each band represents the difference of the August PC band from the same PC band in

October.
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The second approach combines both images into one data set.  For instance, if

both images contained three bands, the combined data set would contain six bands.  The

new data set is transformed into its principal components which is analyzed to determine

which band contains the relevant change information (Singh, 1989).  Figure 2.14

illustrates this approach.  Finding the appropriate band can be difficult, but once found,

will probably remain consistent for similar data sets and targets.

Image
1

Image
2

PCA6-band
Image

Figure 2.14.  Spectral Principal Components Analysis.

Michener and Houhoulis (1997) refer to this approach as spectral principal

components analysis.  They applied spectral PCA to three three-band SPOT multispectral

High Resolution Visible (HRV) images of pre-flood (two images) and post-flood (one

image) conditions in southwest Georgia associated with Tropical Storm Alberto in July,

1994.  Analysis of the eigenstructure and visual inspection of the PC bands indicated that

bands 3 and 4 were attributable to infrared changes caused by the drier vegetation in the

pre-flood images. PC bands 6, 8, and 9 accounted for spectral variability among the red

and green bands of the three images.  PC Bands 1, 2 appeared to be related to overall

brightness while bands 5 and 7 were related to changes in the two pre-flood images.

Applying the same procedure to the Boulder imagery produced similar results.  Figure

2.15 shows the first six bands.  Band 1 most closely represents visible overall radiance.

Change in the lake water level and vegetation health is most evident in bands 4, and 5.

Figure 2.16 shows these three eigenvectors.  Each eigenvector was separated into the six

bands associated with their respective dates and overlaid to allow for easier comparison.
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Eigenvector 1 has all positive weights indicating that all bands have been summed

together.  In eigenvector 4, the first six bands have positive weights while the last six

bands are mostly negative indicating the two dates have been differenced.  Only Landsat

band 4 (4/10) has the same weight in both images indicating that it was not used to create

the change result in PC band 4.  Conversely in eigenvector 5, Landsat band 4 is the only

band used.  In this case, PC band  5 produces a result useful in studying changes in

vegetation while PC band 4 provides information regarding other changes..
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Figure 2.15:  The first 6 PC bands produced by combining the two
Boulder images and conducting the transform on the 12-band

composite image.
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Figure 2.16:  A sample of three eigenvectors for the 12-band composite image.  The
bands are separated into two lines by date and overlaid for a better comparison.

A third approach to PCA-based change detection is to first produce single-band

index images of each image, combine the index images into one multi-band data set, and

perform PCA on the new data set.  Figure 2.17 illustrates this approach.  Subsequent

analysis of the PC bands is the same as that of the previous approach.
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Image
1

Image
2

PCA

NDVI
1

NDVI
2

Figure 2.17.  NDVI-based Principal Components Analysis.

Michener and Houhoulis (1997) apply this method to “NDVI-PCA”.  NDVI

images were produced from the three SPOT images (two pre-flood and one post-flood).

The NDVI images were merged and transformed.  Further analysis showed that PC band

1 related to overall brightness in the images.  PCA band 2 related to differences between

pre-flood and post-flood images, and PCA band 3 related to differences between the two

pre-flood images. Similar results were achieved with the Boulder scene (Figure 2.18).  PC

band 1 used weights of -0.789 (for the first date) and -0.614 (for the second data).  The

negative values caused the gray scale to invert, but since the signs are the same PC band 1

equates to overall brightness.  PC band 2 uses weights of 0.614 and –0.789 which

indicates that it contains the change information.

Studies indicate that PCA-based change detection does not perform as well as

other simpler techniques (Singh, 1989; Michener and Houhoulis, 1997).  It is also

computationally intensive and requires sophisticated analyst input.
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October 85, NDVI
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Figure 2.18:  Two NDVI images combined and converted to
principal components.  PC band 2 identifies the areas of change.



29

5. Post Classification Comparison

Post classification comparison produces change maps by comparing segmented

classes produced from two images (Singh, 1989).  Figure 2.19 illustrates the technique.

Both images undergo supervised or unsupervised classification.  Similar classes from

both images are differenced to produce change classes which are then merged into one

result.

Image
1

Image
2

Class
1

Class
2

Class
3

Class
1

Class
2

Class
3

Result

Diff
1

Diff
2

Diff
3

Classification
Technique

Differencing

Figure 2.19:  A flow diagram illustrating post classification
comparison.

This technique minimizes the effects of differences in atmospheric conditions,

solar angle, and sensor gain.  It also reduces the need for accurate registration because the

classes usually represent larger areas (Singh, 1989).  It is likely, however, that registration

would become more of an issue when attempting to observe smaller targets (i.e. tanks and

trucks).  Figure 2.20 demonstrates post classification comparison with the Boulder scene.
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Figure 2.20:  Post classification comparison as applied to the water
class on the Boulder scene.

August 85, Class 1(Water)

October 85, Class 1 (Water)

Difference: October - August
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The rules of joint probability apply to post classification comparison.  Errors can

be multiplied through to the change result.  For example, the accuracy of a particular

classification technique may be 0.8 for both images.  When the images are compared, the

change detection accuracy becomes 0.8 ×0.8 = 0.64 (Singh, 1989).  This multiplication

of errors causes the post classification comparison to perform badly against the simpler

differencing techniques.  Singh (1989), found that post classification comparison

performed the worst of all techniques tested with an accuracy of only 51.35%.

6. Direct Multidate Classification

Direct multidate classification, sometimes referred to as temporal change

classification (TCC), supposes that spectral data from combined sets of images would be

similar in areas of no change and noticeably dissimilar in areas of change (Weismiller,

1977)  Multiple images are combined into one data set before applying classification.

Supervised or unsupervised classification is applied to both images simultaneously.

In the supervised classification, training sets are obtained that represent areas of

change and no change.  The training sets are used to derive statistics that define the

feature space.  In unsupervised classification, an analysts must first inspect portions of the

scene where known changes have occurred.  Classes are then derived using cluster

analysis. (Singh, 1989)

Weismiller (1977) introduced this technique for applications in coastal studies.

He used clustering and layered spectral/temporal classification.  Selected bands were used

as input to decision functions that followed a decision tree until a change was detected.

Michener and Houhoulis (1997) also employed this technique in their flood study of

southwest Georgia.  Three SPOT-XS images were combined into one nine-band

composite image.  They used an unsupervised method, iterative self-organizing data

analysis (ISODATA), to generate 50 change classes.  In a second approach, Michener and

Houhoulis converted the three images to single-band NDVI images thus creating a three-

band data set instead of the previous nine.  The same unsupervised classification

technique was used to produce the change classes.  They found that the NDVI approach

was successful in detecting changes in vegetation due to flooding, and improved the



32

accuracy by 6.3% over standard post classification techniques.  However, multidate

classification did not perform as well as differencing and PCA.

Overall, multidate classification proved to be “very complex and computationally

intensive” (Singh, 1989).  It has also been difficult to label change classes and

redundancy in spectral information is often present in some bands (Michener and

Houhoulis, 1997).  Weismiller (1997) also concluded that the technique performed

poorly.

Figure 2.21  demonstrates the technique with the Boulder Landsat data using

ISODATA classification in ENVI.  In this case, the procedure was iterated three times

and seven classes were created.  A color version of this figure is contained in Appendix

B.  Class 3 contains change information pertaining to increased vegetation such as that

caused by that surrounding the receding lake.  Class 7 contains change information

pertaining to decreased vegetation health in the fields in the top right corner; however,

this class also includes data that cannot be attributed to areas of change.  Without a priori

information, it might be difficult to discriminate areas of change in these seven classes.

Figure 2.22 illustrates how three of these classes are distributed using difference

band 3 and band 4 of the October image.  A color version of this figure is included in

Appendix B.  Class 4 represents non-natural objects that have exhibited minimal change.

The scatter plot shows that there is sufficient separation of class 4 and the two change

classes, 3 and 7.  While difference band 3 would not be able to discriminate between

classes 3 and 7, band 4 from the October image provides additional information that aids

in describing the type of change that took place.
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Figure 2.21:  Direct multidate classification.  The right side is a
breakout of the various classes.  Classes 3 and 7 contain change

information.
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Figure 2.22:  A scatter plot of three classes.

7. Change Vector Analysis

In change vector analysis, each pixel is described as a vector in N-dimensional

space where N represents the number of bands in the image.  This method is illustrated in

Figure 2.23 using a two-band example.  From two images, a change vector is derived by

subtracting the vector of the image at time, t1, from the vector of the image at time, t2.

The direction of the resultant vector contains information about the type of change that

has occurred.  This usually equates to spectral change.  The magnitude of the resultant

vector contains information about changes in radiance (Singh, 1989).
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Figure 2.23.  An illustration of the formation of a change vector
using two-band image vectors (after Deer, 1995).

In essence, change vector analysis consists of two parts.  The first is nothing more

than band-by-band image differencing.  A change vector can be created by making an N-

band image where each band is the difference of two images of the same band.  This is

the only way to represent all dimensions of a change vector; however, displaying more

than three dimensions is difficult – if not impossible.  Since the direction of the change

vector describes the type of change, it is often preferred to represent the change vector as

a one-band spectral angle image.

This is similar to the spectral angle mapper (SAM) described in Section 2.2, but

instead of using a reference spectrum, the dot product is obtained between both images.

The final result is a change image that is dependent on spectral change and not on

changes in overall brightness.

A simpler means of obtaining the same result is to use a common reference

spectrum for both images in creating individual SAM results.  The difference in the two

SAM results is the spectral angle difference and represents spectral change.  Figure 2.24

illustrates this technique on the Boulder scene using a mean vegetation spectrum as a

reference.  The spectral angle for each image was obtained using the vegetation spectrum.

The change image shown is the difference between the two SAM results.  The August

and October images shown in Figure 2.24 are the individual SAM results.  The vegetation

closest to the mean spectrum appears dark in those images while areas spectrally different
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from vegetation, like water, appear bright.  The difference image shows areas of increased

vegetation health as dark and decreased vegetation health as bright.  It is apparent that

even areas spectrally different from vegetation are cancelled if they are common in both

images.  The result is identical to that of obtaining the dot product between the two

images.

The spectral angle difference also removes mean differences in radiance such as

that associated with sensor gain differences, but since vector magnitude is not accounted

for, it is possible that important changes could be missed.  It may be necessary to have

amplifying information from the N-band change vector image in order to conduct a full

analysis.
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Figure 2.24:  Spectral angle mapper using a mean vegetation
spectrum as the reference.
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8. Previous Studies

Because of the difficulty in acquiring well understood data, few studies have

attempted to quantitatively determine the performance of each technique.  Instead, most

studies qualitatively compare techniques or study only one technique.  Singh (1984, 1986)

and Michener and Houhoulis (1997) have determined change detection accuracies in the

context of their specific data sets.

Singh (1986) concluded that regression produced the highest accuracy followed

by image ratioing and differencing.  Mulitspectral classification such as post-

classification comparison and direct multidate classification produced the lowest

accuracy.  Singh also attempted local processing (i.e. smoothing, edge enhancement,

standard deviation texture) in conjunction with a variety of change detection techniques

but found that they offered little or no improvement in change detection accuracy.

Michener and Houhoulis (1997) used logistic multiple regression and probability

vector modeling to evaluate five techniques.  They also concluded that differencing

produced the highest accuracy followed by PCA.  While there was little difference in

accuracy between S-PCA and NDVI-PCA, NDVI-TCC performed better than S-TCC.

Table 2.1 and Table 2.2 summarize the results of both studies.

Singh (1984, 1986, 1989), Michener and Houhoulis (1997) arrived at the same

fundamental conclusion.  They determined that various techniques yield different results

and that simple techniques outperform sophisticated ones.  More advanced techniques are

being introduced, but as the complexity of the algorithms increase, so does the required

computation.  This is not a desired result since the increased dimensionality of spectral

data is also driving up computational requirements.  It is possible that the most useful

techniques are already available, and this study focuses on those methods.
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Techniques Accuracy
(%)

Univariate image differencing, band 2 73.16
Univariate image differencing, band 4 63.33
Image ratioing, band 2 73.71
Image ratioing, band 4 64.99
Normalized vegetation index differencing 71.05
Image regression, band 2 74.43
Low pass filtered image differencing, band 2 72.09
Background subtraction, band 2 72.32
High pass filtered image differencing, band 2 70.07
Standard deviation texture (3 x 3) differencing, band 2 69.95
Principal components, image differencing
(unstandardized)

71.49

Principal component-2, image differencing
(standardized)

64.32

Post-classification comparison 51.35
Direct multidate classification 57.29

Table 2.1:  Summary of the best classification performance for the
change detection techniques studied (from Singh, 1989).  Bands refer
to Landsat MSS.

Method      Correct Incorrect Correct Incorrect Accuracy

(a) S-TCC 36 10 32 34 0.607

(b) NDVI-TCC 38 8 37 29 0.670

(c) S-PCA 33 13 46 20 0.705

(d) NDVI-PCA 41 5 37 29 0.696

(e) NDVI-ID 29 17 57 9 0.768

No. Dead Sites No. Live Sites

Table 2.2:  Accuracy assessment of five change detection techniques
used to assess vegetation response to flooding (from Michener and

Houhoulis, 1997
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III. THE SPATIALLY ENHANCED BROADBAND ARRAY
SPECTROGRAPH SYSTEM (SEBASS)

This thesis deals with data from the thermal imaging spectrometer, SEBASS.

SEBASS, under development by the Aerospace Corporation, El Segundo, CA, filled the

gap in imaging spectroscopy by providing a two-channel system that collected in the

MWIR and LWIR regions.  The instrument (pictured in Figure 3.1) collects 128 bands in

the MWIR (2.1 – 5.2 µm) and 128 bands in the LWIR (7.8 – 13.4 µm) using a bushbroom

scanner (Hackwell, 1997).

Figure 3.1:  SEBASS installed in the aircraft atop the roll
compensator.

A. DESIGN

SEBASS employs a pushbroom collection concept by imaging through a thin slit.

Light from the slit is split to two spectrographs as depicted in the optical layout in Figure



42

3.2.  Two spherically shaped salt (LiF for the MWIR channel and NaCl for the LWIR

channel)  prisms disperse the light on two 128 x 128 element silicon arsenide (SiAs)

blocked impurity band (BIB) focal plane arrays (FPAs).  These FPAs are placed so that

one dimension of the array captures the dispersed spectrum while the other dimension

captures across-track spatial information.  Along-track spatial information is collected in

all bands simultaneously as the sensor moves in the direction indicated by Figure 3.3.

Each element on the array has an instantaneous field of view (IFOV) of 1 mrad (0.057°).

This provides a 128 mrad (7.30°) total field of view (FOV).  The ground sample distance

(GSD) for a typical altitude of 6000 feet is 6 feet.

Figure 3.2:  The SEBASS optical layout (From Hackwell, 1997)

Figure 3.3:  The SEBASS FPA configuration (From Hackwell, 1997).
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Spectral resolution, the spacing between the center wavelengths for each band,

varies across both the MWIR and LWIR arrays (see Figure 3.4).  The MWIR spectral

resolution varies from 0.064 µm at the low edge to 0.014 µm at the high edge.  Likewise,

the LWIR spectral resolution varies from 0.070 to 0.040 µm (Smith and Schwartz, 1997).
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Figure 3.4:  A plot of the band width of each spectral band for the
LWIR channel.

Each FPA has a maximum acquisition rate of 240 Hz; however, at least two

consecutive frames must be coadded to achieve an acceptable SNR.  Therefore, the

maximum frame rate for SEBASS is 120 Hz.  This is adjustable to achieve a desired SNR

or to account for major differences in aircraft speed and altitude.

The sensitivity of the sensor is improved by cooling it to 4°K in a helium-cooled

dewar (Figure 3.5). The FPAs are then heated to 11°K for improved temperature stability.

This provides a single frame noise equivalent spectral radiance (NESR) of 1.0 µW/cm2 sr

µm (µ flick) in both channels.  Coadding frames reduces the NESR.  For example, 240

coadds improves the NESR to 0.2 µ flicks (Hackwell, 1997).  Figure 3.6 is a plot of the

NESR for calibration runs of two flights.
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Figure 3.5:  The flight crew maintains a sufficient liquid helium
level to keep the FPAs at 11°K.

Figure 3.6:  The effects of coadding frames on the noise equivalent
spectral response (from Hackwell, 1997).
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The instrument is operated in flight by a Sun SPARCstation 20.  The flight crew

monitors data collection from a waterfall display on the SPARC20 monitor.  Figure 3.7 is

a photograph of the SEBASS control console installed in the aircraft.  The waterfall

output is dispayed on the top monitor.  The two LCD monitors provide attitude and status

information as well as video output from a forward-looking video camera.  Roll

correction is provided mechanically by a 1 Hz roll compensator.  This adequately reduces

low frequency roll errors, but high frequency errors (above 1 Hz) are not corrected.  Pitch

and yaw errors are not corrected.

Figure 3.7:  The flight crew monitors SEBASS status and operation
from this console.

Initially, the data are collected in 4 byte integer format with a 64 Kb embedded

binary header.  They are converted to 4 byte floating point during preprocessing.  The

data are oriented as band-interleave by pixel (BIP) such that the spectral dimension is

read first, then the across-track spatial dimension, and finally the along-track (temporal)
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dimension.  Data values are often represented as N(i, j, k)  where i, j, and k represent the

spectral band, across-track position, and along-track position respectively.

B. CALIBRATION

Raw sensor data are stored on two hard disks (18 gigabytes total) onboard the

aircraft.  After a collect, the data are downloaded to a SparcUltra 2 and stored on either of

two 20 GB hard disks.  The data must be calibrated spectrally and radiometrically before

it is useful to the user.  The instrument has been altered since the initial work reported by

Collins (1996) and some of the details in the material given here will differ from the

earlier report.

1. Spectral Calibration

Spectral calibration is the process of determining the center wavelength of the

energy that falls on each pixel in the array.  The distribution of the spectrum is neither

linear across the array nor constant over time, so it is necessary to calibrate the sensor

periodically - usually prior to a collection exercise.

The dispersive properties of the prisms in SEBASS cause the image of the slit

aperture to curve slightly at the focal plane.  This curvature varies with position along the

slit.  The spectrum undergoes a similar phenomenon in which the wavelength shifts along

the in-track (wavelength) dimension of the array.  Figure 3.8 and Figure 3.9 depict the

shape and magnitude of the slit and spectral curvature.  In either case, the variation is less

than one pixel.  Both slit and spectrum curvature are corrected through the wavelength

calibration which applies a two-dimensional second-order polynomial function to

determine the center wavelength at each pixel position (Johnson, 1997).
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Figure 3.8:  This graph depicts the shape of the slit image at the FPAs for four
wavelengths.  The variation is less than one pixel.  The FPA diagram (right) orients the

array. (From Hackwell, 1997)

Figure 3.9:  This graph depicts the shape of the slit image across the spectral dimension.
The FPA diagram (right) orients the graph. (from Hackwell, 1997)
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Polymer films are used as calibration standards for the LWIR wavelength 

calibration (Figure 3.10).  SEBASS first acquires a 256-frame data set of hot and cold 

blackbody sources, and then acquires similar images after placing one of the polymer 

films in front of the slit aperture.  The measured transmittance spectrum of the polymer 

film is the ratio of the images with and without the film (Collins, 1996).  A similar 

technique is used for the MWIR channel, but instead of polymer films, a xenon reference 

lamp is used.  The location of known absorption bands from the image are compared with 

observed values from the FPA.  A wavelength map is generated using the following 

equation: 

 λ i j A i j A i j A i,� � � � � � � �= + +2
2

1 0  (3.1) 

where the coefficients A in � � are functions of the spatial index, i, and for the LWIR 

channel are given as: 

 A i i i0
1 2 4 25795215 10 2 357859 10 1222431 10� � = × − × + ×− −. . .  (3.2) 

 A i i i1
0 5 7 21042670 10 1700715 10 2 397566 10� � = × − × + ×− −. . .  (3.3) 

 A i0
41419449 10� � = − × −.  (3.4) 

and for the MWIR channel, are given as: 

 A i i i0
0 4 5 23123135 10 4 640077 10 2 853933 10� � = × + × − ×− −. . .  (3.5) 

 A i i i1
1 6 8 22 227641 10 3827485 10 6551992 10� � = × + × + ×− −. . .  (3.6) 

 A i0
43186248 10� � = − × −.  (3.7) 

 (Johnson, 1997). 
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The spectral calibration only documents the position of the center wavelength for

each pixel.  While this is sufficient for most spectral analyses, some approaches may

require the removal of the spectral curvature.  To do this, the image is resampled

spectrally using a cubic spline interpolator (Smith and Schwartz, 1997).

Figure 3.10:  The polymer film is inserted in place for the LWIR
wavelength calibration.

2. Radiometric Calibration

Two Santa Barbra Infrared (SBIR) blackbody sources are used during flight to

provide calibration data of SEBASS between shots.  The blackbodies are maintained at

23.5C and 35.0 °C to provide hot and cold sources for the calibration encompassing the

range of temperature values expected in the scene.

The Aerospace Corporation upgraded the FPAs in SEBASS which has eliminated

early problems with sensor nonlinearity concerning radiometric calibration.  This has

simplified calibration to a two-point linear scheme.  Before this linear scheme can be

implemented, a spectral radiance truth map is computed for each calibration source.  This

is given as
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 L i j L i j TC BB C, , ,� � � �= λ  (3.8) 

 L i j L i j TH BB H, , ,� � � �= λ  (3.9) 

where λ i j,� �  is the instrument wavelength map (from Equation 3.1), TC  is the cold 

blackbody temperature (°K), and LBB  is the Planck blackbody function (from Equation 

2.5). 

To provide a low-noise data set for the blackbody calibration measurements, the 

frames (in the k dimension) are averaged together to reduce the measurement to two 

dimensions: 

 N i j
N

N i j kC
k

C
k

K

, , ,� � � �=
−

∑1 1

 (3.10) 

and N i j
N

N i j kH
k

H
k

K

, , ,� � � �=
−

∑1 1

 (3.11) 

where N i j k, ,� �  represents the original K calibration measurements and N i j,� �  
represents the frame-averaged calibration data which is used for radiometric calibration. 

The spectral radiance truth maps are applied to the radiometric calibration which 

is given as: 

 L i j k G i j N i j k O i j, , , , , ,� � � � � � � �= +  (3.12) 

where N i j k, ,� � is the original uncalibrated scene data, G i j,� �  is the sensor calibration 

gain given as: 

 G i j
L i j L i j

N i j N i j
H C

H C

,
, ,

, ,
� � � � � �

� � � �=
−
−

 (3.13) 

and O i j,� �  is the sensor calibration offset given as: 
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 O i j
N i j L i j N i j L i j

N i j N i j
H C C H

H C

,
, , , ,

, ,
� � � � � � � � � �

� � � �=
+ −

−
 (3.14) 

 (Smith and Schwartz, 1997). 

The result is data calibrated for radiance at the sensor.  If it is necessary to have 

the data calibrated for ground radiance, then atmospheric calibration such as the plastic 

ruler method (Chapter 2) must also be applied. 

C. CHARACTERISTICS 

1. Thermal Drift 

SEBASS experiences a slight thermal drift that occurs during operation.  With the 

previous FPAs, this drift was nonlinear and required an exponential interpolation 

(Collins, 1996).  The current FPAs exhibit linear characteristic, therefore, the drift can be 

corrected using linear interpolation.  Runs are invalidated if the thermal drift rate exceeds 

a given threshold, but unacceptably high drift rates seldom occur. 

2. Unresponsive Detectors and Pixel Slip 

Of the 32,768 detectors in the FPAs, 30 are known to be unresponsive. Table 3.1 

and Table 3.2 list the locations of the unresponsive pixels.  If not corrected, these 

elements exaggerate the NESR and make radiometric calibration inaccurate.  Various 

interpolation schemes are used to remove them from the data.  For normal aerial 

operations, linear interpolation corrects the unresponsive pixel using two adjacent pixels 

in the across-track (j) dimension (Hackwell, 1997).  During CARD SHARP, SEBASS 

made four scans of the target area where the instrument was moved 1 mrad in the across-

track direction between each scan (Smith and Schwartz, 1997).  The additional 

dimensionality of the data was reduced by applying a median filter which interpolated the 

data in the temporal dimension.  In either case, the result is similar, and the unresponsive 

elements do not affect the data. 
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Bad Detector
Element Number

Spatial (i)
Location
(1-128)

Spectral (j)
Location
(1-128)

1 75 18
2 80 23
3 81 23
4 44 47
5 118 58
6 118 59
7 118 73
8 119 63
9 9 74

10 10 74
11 113 91
12 48 100
13 104 103
14 19 106
15 20 106
16 125 120

Table 3.1:  Unresponsive LWIR detectors (From Smith and Schwartz, 1997).

Bad Detector
Element Number

Spatial (i)
Location
(1-128)

Spectral (j)
Location
(1-128)

1 21 27
2 22 27
3 63 28
4 16 42
5 102 43
6 102 44
7 56 47
8 51 65
9 110 69

10 49 72
11 117 110
12 13 111
13 14 111
14 14 112

Table 3.2: Unresponsive MWIR detectors (From Smith and Schwartz, 1997).
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IV. DATA COLLECTION

The change detection algorithms tested in this study were applied to two data sets.

Images on multiple dates from the Capabilities and Requirements Demonstration for the

SEBASS High Altitude Reconnaissance Project  (CARD SHARP) were used because the

sensor was terrestrial based during the demonstration providing stable images with

nominally high SNR.  No geometric corrections or registration were required for these

data.  The second data set consisted of images taken at multiple times during the same

day of Camp Pendleton Marine Corps Air Station.  These data were collected in flight

and contain the artifacts associated with aerial collects.  These latter data illustrate the

shortcomings of change detection in realistic scenarios.

A. CARD SHARP

In October, 1996, the Environmental Research Institute of Michigan (ERIM), in

conjunction with The Aerospace Corporation conducted the Capabilities and

Requirements Demonstration for the SEBASS High Altitude Reconnaissance Project

(CARD SHARP).  The primary goal of CARD SHARP was to demonstrate the utility of

MWIR and LWIR imaging spectrometry for detecting camouflaged targets in a vegetated

environment (Smith and Schwartz, 1997).  CARD SHARP was jointly sponsored by the

U. S. Air force Wright Laboratories, (WL/AAJS), the Central MASINT Technology

Coordination Office (CMTCO), the U. S. Army Missile Command (MICOM), the Naval

Research Laboratory (NRL), and the Hyperspectral MASINT Support to Military

Operations (HYMSMO) Program.

From 9 October 1996 through 17 October 1996, SEBASS recorded MWIR and

LWIR measurements at the Redstone Arsenal in Huntsville, Alabama.  The instrument

was mounted on a 300 foot tower in a panoramic configuration such that each scan could

be made by steering the sensor azimuthally using a rotating mirror.  Comparing this to the

aerial pushbroom configuration, azimuth equates to the along-track dimension (j) while
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elevation equates to the across-track dimension (k).  High counting statistics were attained

by using relatively large numbers of samples (coadds) compared to those typically

attainable during airborne collects.

The CARD SHARP collection was intended to demonstrate target detection in a

concealed, vegetation environment.  Both U. S. and foreign military equipment were

deployed in the collection area.  Foreign equipment included a ZIL-131 transport, a T-72

tank, a BTR-70 armored personnel carrier (APC), an SA-13 GOPHER surface-to-air

missile (SAM), and an SA-4 GANEF SAM.  U.S. equipment includes an M1E1 main

battle tank (MBT), an M2 Bradley APC, an M35 2.5-ton truck, an M60A3 MBT, and an

M60A2 MBT.

1. The Collection Scenario

Three target deployments were conducted during the demonstration – each with a

set of scenarios.  Based on target availability and the type of scenarios, the target

deployments occurring at sites S1 and S2 were chosen for our purposes.  S1 and S2 were

adjacent to each other and were included together in the same images.  S1 contained U.S.

equipment while S2 contained foreign equipment.  SEBASS collected both sites on 10

October 1996 and 11 October 1996.  During scenario 1, collected on the 10th, all targets

were concealed using the appropriate camouflage, concealment, and deception (CC&D)

techniques.  During scenario 2, collected on the 11th, the CC&D was removed while

leaving the equipment in place.  The subtle changes that these scenarios provide make

them well suited for testing change detection algorithms.  Figure 4.1 is a photograph

showing the positions of sites S1 and S2 with respect to the SEBASS field of view.  A

color version of this figure is available in Appendix B.
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SEBASS Field of View

Figure 4.1:  Site layout at Redstone Arsenal (from Smith and Schwartz, 1997).

The SEBASS field of view also contains sites S6 and S7.  Activity in these areas
includes the deployment of a Hawk surface-to-air missile, an M-35 truck, a distribution
van, and an SA-4 surface-to-air missile.  These vehicles are not directly connected to
scenarios 1 and 2, but any activity taking place during the scenarios was still considered
in this study.  Figure 4.2 identifies the vehicle positions using a SEBASS band 64 image
acquired on 11 October 1996 when the vehicle were uncamouflaged.  Figure 4.3 and
Figure 4.4 are photographs of the M1E1 MBT during scenario 1 (camouflaged) and
scenario 2 (uncamouflaged).  Color versions of Figure 4.2, Figure 4.3, and Figure 4.4 can
be found in Appendix B.  Table 4.1 lists the location and activity of each vehicle during
each scenario.
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Figure 4.2:   Vehicle positions in the CARD SHARP field of view.
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Figure 4.3:  The M1E1 Abrams MBT positioned at site S1 with
woodland camouflage.

Figure 4.4:  The M1E1 Abrams MBT positioned at site S1 without
camouflage.
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Scenario
Time/Date Site Vehicle Description CC&D
Scenario 1
2200 10-9-96 thru 1400
10-10-96

S1 M1E1 Abrams MBT LCSS woodland

2200 10-9-96 thru 1400
10-10-96

S1 M60A3 MBT LCSS woodland

2200 10-9-96 thru 1400
10-10-96

S1 M2 Bradley APC LCSS woodland

2200 10-9-96 thru 1400
10-10-96

S2 T-72 MBT British with thermal
blankets

2200 10-9-96 thru 1400
10-10-96

S2 BTR-70 APC West German woodland

2200 10-9-96 thru 1400
10-10-96

S2 ZIL-131 East German woodland

Scenario 2
1400 10-10-96 thru
1100 10-11-96

S1 M1E1 Abrams MBT none

1400 10-10-96 thru
1100 10-11-96

S1 M60A3 MBT none

1400 10-10-96 thru
1100 10-11-96

S1 M2 Bradley APC none

1400 10-10-96 thru
1500 10-13-96

S2 T-72 MBT none

1400 10-10-96 thru
1500 10-13-96

S2 BTR-70 APC none

1400 10-10-96 thru
1500 10-13-96

S2 ZIL-131 none

Table 4.1:  Location and description of equipment for scenarios 1
and 2 (after Smith and Schwartz, 1997).

2. Data

Scans for both days began and ended at the same azimuth to eliminate the need for

registration.  Each scan consisted of 1000 lines (57.3° azimuthal FOV).  In order to
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exclude unresponsive sensor elements from the data set, four scans were acquired for

each measurement.  Each scan was offset in elevation by the instrument’s IFOV (1 mrad).

During preprocessing, the four scans were combined using a median filter.  The final

LWIR hypercubes consisted of 128 bands by 131 pixels (elevation) by 1000 pixels

(azimuth).

While both MWIR and LWIR channels were available, only the LWIR

hypercubes were used in this study.  To minimize noise, 20 frames were coadded for each

scan.  Merging the four scans using the median filter technique further minimized noise

creating the effect of coadding 80 frames.  The instrument scan rate was 12 Hz and took

83.3 seconds to complete each scan.  Preprocessing consisted of calibrating the data to at-

sensor radiance in accordance with Chapter 3 of this thesis.  Calibration source data files

were not available for accurate atmospheric correction using the plastic ruler method.

Because the data were collected on a stable platform, they do not contain the

typical problems associated with aerial collection (i.e. roll error, vibration, noise, coadd

constraints).  Furthermore, the demonstration was well executed with numerous target

types all concealed in a challenging, vegetated scene.  This provided an ideal setting for

testing change detection techniques.

B. MCAS CAMP PENDLETON

On 10 December 1997, data from Camp Pendleton MCAS was collected to

provide a realistic data set for change detection.  This site was well suited because recent

ground truth information was available from EXERCISE KERNEL BLITZ conducted at

Camp Pendleton from 10 June 1997 to 7 June 1997.  It also provides a busy, military-

urban scene with which to test a variety of techniques.  Much of the activity entails the

movement of large equipment, such as helicopters, which also may allow the use of

change detection to discriminate different types of thermal scarring.
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1. Collection Parameters

On 10 December 1997, troops at Camp Pendleton MCAS were conducting

training exercises.  The SEBASS flight crew were permitted to collect on the LCAC

facility, air field, and train depot before (1000) and after (1400) the training exercises.  No

coordination took place between the flight crew and marine units.  The expectation was

that the activity between the two collects would be sufficient to provide a change-rich

scene.

All flight operations were restricted to 3000 feet.  This provided a nominal GSD

of 3 feet (0.9 meters) and an swath width of 384 feet (117 meters).  Multiple passes were

made on each target area to ensure the full area was collected.  Figure 4.5 shows how the

passes were flown.  A color version of this figure is located in Appendix B.

Figure 4.5:  A composite image consisting of Landsat TM (bands 1, 2, and 3), a color
aerial photograph mosaic, and  the two SEBASS images used for this study.
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2. Target Description

The airfield at Camp Pendleton MCAS consists of a cement parking apron and an

asphalt runway.  Most of the aircraft on the parking apron are H-53 helicopters.  Since

little activity was expected on the runway, it was not imaged for this study.  Images of the

parking apron were acquired before and after a major flight operation; therefore, it was

presupposed that aircraft would not be returned to their exact previous positions.

The supply depot consists mostly of large warehouse-like buildings, parking lots,

and staging areas.  The building use a variety of roofing materials including tin and tar.

The parking lots and staging areas consist of cement and asphalt.  Since these images

were acquired during a week day, automobiles occupy a large majority of the parking lots.

Vandergrift Boulevard separates the supply depot from the airfield and consists of

asphalt.

3. Considerations

Winds were high during the collection periods making the aircraft difficult to

control.  The roll compensator was unable to correct for the high degree of roll error.

This is manifested in the data as skewing (or squiggle).  Because the squiggle was such a

high frequency, it was imperative to remove the squiggle before the data could be

registered.  The data were “de-squiggled” by cross correlating each scan line with one

adjacent to it and determining the line offset from the maximum correlation. A

polynomial function was derived from the correlation data and applied to the squiggle

pattern.  Figure 4.6 illustrates the technique graphically, and Figure 4.7 demonstrates the

technique on real data.

Once the error correction was removed, each hypercube was registered to a

rectilinear aerial photograph of Camp Pendleton using the triangulation-based registration

procedure available in ENVI.  In order to compensate for roundoff error in the roll

correction and to minimize the effects caused by along-track stretching and compression

due to sampling rate errors, close attention was paid to proper registration. Each image
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Figure 4.6:  The cross-correlation technique for removing error correction. (a) The
uncorrected image. (b) The technique by finding the offset with the highest correlation.

(c) The corrected (straightened) image.

Raw Image Desquiggled Image Registered Image

Figure 4.7:  A subset of the Camp Pendleton supply depot where
roll correction and registration has been applied.
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required at least 50 ground control points to ensure accurate registration.  Nearest

neighbor interpolation was used to maintain radiometric integrity.

A high degree of roll error was introduced into the airfield scenes.  This, coupled

with a lack of geographic features that could be used for ground control points, prevented

adequate registration.  Aircraft parking locations were not sufficiently aligned to enable

change detection.  Therefore, it was necessary to remove the airfield data from

consideration in this study.

The Camp Pendleton data could also be used in the analysis of thermal scarring.

Thermal scarring is defined as any change in the appearance of an object which is

associated with the proximity of another object.  Thermal scarring is usually associated

with thermal changes in cement parking areas such as airfields and parking lots.  For

instance, an aircraft may leave a thermal scar when is has been parked in one place

through most of the night.  When the aircraft leaves its position, the cement beneath it

will be warmer than the surrounding cement leaving a thermal scar that resembles the

shape of the aircraft.  Thermal scarring is used by imagery analysts to determine the

recent departure of vehicles from a given position.

It is not always clear, however, that thermal scarring is caused by temperature

differences.  Vehicles tend to leak hydraulic fluid which can change the emissivity of the

surface below.  This can also appear brighter or darker than the surrounding area.  This

type of scarring is created over time, but it can be interpreted incorrectly as a thermal scar

associated with aircraft or vehicle operations.  For this reason, it is important to

differentiate a true thermal scar (indicating vehicle movement) from other types of

scarring.  The airfield data provides a number of thermal scarring examples; however,

since the data are not conducive to change detection, further study is recommended at a

later time.

C. CONSIDERATIONS FOR SPECTRAL CHANGE DETECTION

The quality of spectral data can vary widely, and it is important to avoid

restriction of this study to only one data set.  As mentioned previously, a number of
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undesirable characteristics accompany the analysis of aerial data.  These characteristics

can preclude accurate analysis; however, they highlight the problems associated with

aerial data and warrant study concurrent with a study under more controlled conditions.

Although the CARD SHARP data do not contain artifacts associated with attitude

errors, they do contain instrument-related errors which require a closer look.  These data

allow the scope of the analysis to narrow to the evaluation of techniques without

considering how certain artifacts might affect those techniques.  It also allows the analysis

to consider other problems with change detection that might be associated with thermal

spectral imagery in general that otherwise might be masked by platform-specific issues.

One example is the noticeable variability in the data between dates.  It is expected

that changes in air temperature, humidity, and other weather conditions will affect overall

scene brightness as well as affect some local areas in different ways; however, local

variations in these data appear to be unnatural.  Figure 4.8 shows band 64 on 10 October.

A brightness gradient is present such that the left side of the image is brighter than the

right side.  PC band 5 of the 10 October data isolates some of the gradient.

10 October 96, Band 64

10 October 96, PC Band 5

Figure 4.8:  These images show that an along-track gradient exists
where the left side of the image is brighter than the right side.

Gain inconsistencies are also present in the across-track direction.    Figure 4.9

shows the first 200 lines of three principal components (PC bands 1, 7, and 15) for both

dates and the result of differencing those PC bands (11 October minus 10 October).  For

both dates, band 1 contains overall brightness information and is provided for orientation.
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PC bands 7 and 15 contain distinct periodic noise that cannot be attributed to natural

causes.  It would appear that the gain fluctuates along the spatial dimension of the LWIR

FPA.  The differenced images demonstrate that this fluctuation is not consistent between

dates because the periodic pattern is not minimized or eliminated.  These gain

inconsistencies add to the noise making it difficult to identify small spectral changes.
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Figure 4.9:  A comparison of PC bands 1, 7, and 15 for both dates
and the difference between the two dates.

Since much of the signal in thermal spectral data is caused by thermal emission,

converting the data to emissivity removes much of the information content and has the

effect of exaggerating the noise.   To demonstrate this the data were converted to

emissivity using the plastic ruler method and atmospheric data from MODTRAN. Figure

4.10 depicts this result.  When the data are converted to emissivity, a brightness gradient

is easily observed in scenario 1 that is not introduced from the natural local environment.

Scenario 2 contains no gradient.  In both images, the across-track periodic pattern is

present.  This phenomenon appears to be specific to SEBASS, but may not be a recurring

artifact in the instrument.  Its impact on the ability to conduct change detection is

profound.  Such brightness gradients can hide subtle changes within noise and increases
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the potential for false alarms.  For this reason, using data converted to apparent emissivity

proved unreliable.  Since the noise was not as evident in the unconverted data, the at-

sensor radiance data was used in this study.  This example suggests that tighter sensor

gain control is required to improve change detection capability.

10 OCTOBER 98 11 OCTOBER 98

Figure 4.10:  A comparison of CARD SHARP images converted to
emissivity.

To further investigate the difference in emissivity data, Figure 4.11 plots the

histograms from emissivity band 64 of both dates.  It is easy to see that the drastic

difference in the two histograms would make it impossible to use for change detection.

Based on Figure 4.10 above, it appears that the 11 October data more closely resembles

apparent emissivity data.  Another conclusion can then be drawn from its histogram.  The

majority of the material in the image has an emissivity greater than 0.995 which suggest

that most objects in the image are nearly blackbody emitters.  Therefore, spectral change

in heavy vegetation will occur within 0.5 percent of the total signal.  This further suggests

that a very high SNR is required to accurately conduct change detection.

These problems appear to be unique to the CARD SHARP collect and are not

evident in other data as SEBASS development continues.  Further improvements to the

thermal spectral program will increase the sensitivity and utility of such an instrument for

change detection.
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Figure 4.11:  Histograms of band 64 from both dates converted to
emissivity
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V. DATA ANALYSIS

Before the value of various change detection techniques can be studied it is

necessary to characterize spectral change and consider the value of spectral change

detection in general.  The analysis here does not attempt to categorize current methods,

but rather performs an in-depth examination of spectral change in these data using simple

analysis techniques.  The desired result is to detect spectral change, to evaluate these

analysis methods, and to classify sources of error that reduce the effectiveness of spectral

thermal change detection.

A. METHODS FOR HYPERSPECTRAL CHANGE DETECTION

Not all of the methods illustrated in Chapter 2 are useful for this work.

Classification techniques were eliminated from this study because of their complexity.

Generally, post classification comparison and direct multidate classification work well

when a scene provides a relatively small number of large areas such as vegetation, water,

and urban.  When trying to identify a very small number of pixels that represent a change

class, the task becomes difficult.  It is further complicated when the changes of interest

are a subset of a larger class such as vegetation as is the case with the CARD SHARP

data.  To attempt a proper study of classification techniques would require many

iterations and extensive analyst intervention.  This defeats the purpose of seeking

techniques that would reduce such intervention and the amount of time required to

analyze a scene.  It is possible that further study will reveal that classification techniques

are useful and accurate, but they have been considered outside the scope of this

introductory study of change analysis for thermal hyperspectral imagery.

The emphasis of this study is on simple techniques and determining the feasibility

of detecting spectral change.  With that in mind, the analysis of the CARD SHARP data

is strictly an analysis of spectral change in thermal imagery in the context of a heavily

vegetated environment.  Change vector techniques such as differencing and spectral angle
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will be the primary means for identifying change.  A similar analysis is provided for the

Camp Pendleton data; however, a different set of challenges exists with these data thus

further testing the techniques in a more realistic environment.

B. CHANGE DETECTION: CARD SHARP

1. Image Differencing and the Target-to-Background Separation (TBS)

A goal of this work is to utilize the spectral character of the data to detect changes

that are often not detected in broadband imagery.  The intent is to find subtle changes in a

scene that equate to spectral features where, in broadband imagery, these features are

averaged and removed.

To begin, we must first look at change detection in simulated broadband imagery.

Two CARD SHARP hypercubes were converted to pseudo forward looking infrared

(FLIR) images by averaging all bands equally.  The result is a single broadband image for

each date. The images were differenced to determine if the change in the vehicles could

be discerned without the spectral information.  Figure 5.1 is the resulting change image

scaled to enhance the identification of the changed targets.  The 1000 line image has been

divided into two segments beginning at the top left and ending at the bottom right.  The

image is expressed in difference in radiance measured in µflicks.  The image gray scale is

set such that white represents a small change and black represents a large change.  Note

that most of the vehicles are discernable without the need for the spectral dimension.

This suggests that the largest amount of change associated with the targets is caused by

the thermal difference of using camouflage and not using camouflage.
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Figure 5.1:   A change image created by first averaging all bands of
each hypercube and then differencing the two resulting images.

To further illustrate the concept of change, it is appropriate to discuss the

difference distribution as done in Chapter 2.  Recall that areas of no change will remain

close to the mean of the distribution while areas of change will appear in the tails.  Figure

5.2 is a comparison of the histogram of the entire change image and the histogram of the

pixels that contain target information (indicated in black).  The vertical and horizontal

lines represent the mean (-39.32) and standard deviation (13.96) respectively of the entire

scene.  The subset of target pixels will include a small number of background pixels

adjacent to the targets and small number of mixed target/background pixels.  The mean of

the target pixels is 1.96 standard deviations to the right of the mean of the entire change

image.  This measure will be referred to as the target-to-background separation (TBS).

Also note that a large portion of the target pixels fall completely outside the distribution

of the non-target pixels.  These pixels are highly discernable and do not resemble

background.  Target pixels that fall inside the overall distribution compete with

background and may be less discernable.
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The image in Figure 5.1 is scaled over the distribution of target pixels such that

any target pixels outside the overall distribution appear black and all other pixels with

values from –10.0 to –35.0 are scaled from black to white.  This illustrates the mixing in

the distribution of background and target pixels.  All pixels that appear as non-white are

in the same distribution as the leftmost target pixels depicted in the histogram.

Figure 5.2:   A histogram of the CARD SHARP change image in
Figure 5.1 produced from the pseudo FLIR images.

Such a result in a broadband image seems to negate the need for spectral change

detection.  In fact, the CARD SHARP data set appears to be void of significant spectral

change that is independent of thermal change.  Figure 5.3 illustrates 18 bands of the first

200 lines of the change vector image.  Note that the three vehicles in the image are visible

in every band which indicates that removing the camouflage corresponded to an overall
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increase in target radiance.  This suggests that it might be an inappropriate data set for an

in-depth study of spectral change techniques.  This unexpected result for the heavily

vegetated Huntsville scene requires a more careful consideration.

Figure 5.3:  The first 200 lines of the CARD SHARP change
vector - eighteen bands spaced seven bands apart.
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Figure 5.4 is a plot of the ground truth spectra of the M-60 tank with and without

camouflage. A color version of this figure is available in Appendix B.  This plot also

includes the difference of the two spectra.  A significant spectral feature is visible at 9.50

µm where there is a relative decrease in radiance of the camouflaged tank.   This equates

to band 31 in the SEBASS dates.
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Figure 5.4:  Ground truth spectra acquired during CARD SHARP
for the M-60A MBT.

Ground truth spectra were not available for all of the vehicles in the scene, so a

variety of pixels were sampled from the image and their spectra are presented in Figure

5.5.  There are two major features that stand out in these spectra.  There is a feature

located at 9.16 µm (band 27) and one located at 12.52 µm (band 98).  The feature at 12.52

µm is an atmospheric absorption band and is not actually a true target spectral feature.

Figure 5.6 depicts the MODTRAN output for Huntsville, Alabama during October.  An
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absorption band is present at 12.52 µm, and the change here is associated with the

fluctuation of the humid Huntsville atmosphere.

The feature at 9.16 µm appears to be the compliment to the feature previously

identified in the camouflaged M-60 spectrum.  Close comparison of Figure 5.4 with

Figure 5.5 shows that both the 9.45 µm and 9.16 µm features are present in the ground

truth and SEBASS data.  A more revealing plot of this relationship is presented in Figure

5.7.  This feature is present in the image in all three camouflaged U.S. vehicles but not

present in the foreign vehicles or vegetation.  This appears to be the only truly discernable

spectral feature available in the CARD SHARP scene. Color versions of Figure 5.5 and

Figure 5.7 are available in Appendix B.

CARD SHARP Difference Spectra 
(11 October minus 10 October)

-50

-40

-30

-20

-10

0

10

20

7 8 9 10 11 12 13 14

Wavelength (µm)

 M1E

M60A

M2

T-72

SA-4

 Tree(center)

 Tree(left)

12.52 µm 
Atmospheric
Absorption

9.16 µm 
(US Woodland Camouflage)

Figure 5.5:  A variety of difference spectra produced by subtracting the
spectrum at a given pixel location in the 10 October image from the spectrum

at the same pixel location in the 11 October image.
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MODTRAN Output: Huntsville, AL
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Figure 5.6:   MODTRAN output for Huntville, Alabama during
October.
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M-60 Ground Truth and Real Data
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Figure 5.7:  A comparison of SEBASS and ground truth difference
data for the M-60A MBT with and without camouflage.

These differenced spectra suggest the data should be compared at these spectral

wavelengths.  The uncamouflaged vehicles in the image from 11 October should be

brighter than the camouflaged vehicles in the 10 October image.  In a change image,

where 10 October is subtracted from 11 October, this would appear as a brighter value

than pixels that do not exhibit the same spectral change.  While this feature is

distinguishable in the spectra, it does not produce a noticeable difference in the images.

Figure 5.8 compares 200 lines containing the three U.S. vehicles for Band 27 (9.16 µm),

band 33 (9.50 µm), and band 98 (12.52 µm).



78

Figure 5.8:   A comparison of three significant bands.

This qualitative result can be quantified by further study of the data distribution.

Figure 5.9 through Figure 5.16 are the histograms and change images for bands 27, 33,

86, and 98 respectively.  The most significant indication that there is a difference in the

vehicles from the two bands is that, in band 33, the target-to-background separation

(TBS) is 1.99 standard deviations, and in band 86, it is 1.90 standard deviations.  This is

not an appreciable difference considering that the TBS for the simulated FLIR image was

1.97, but it does demonstrated that relatively small spectral changes are detectable using

TBS.  Note that band 98 has a TBS of 2.17.  This is the highest of all four selected bands

but is associated with an atmospheric absorption feature instead of a spectral feature.  The

vehicles are plainly visible in all images which further illustrates the dominance of the

thermal change over the small spectral change.
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Figure 5.9:  Histogram for CARD SHARP difference band 27 (9.16 µm).

Figure 5.10:  Change image for CARD SHARP difference band 27 (9.16 µm).
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Figure 5.11:   Histogram for CARD SHARP difference band 33 (9.50 µm).

Figure 5.12:   Change image for CARD SHARP difference band 33 (9.50 µm).
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Figure 5.13:   Histogram for CARD SHARP difference band 86 (12.02µm).

Figure 5.14:   Change image for CARD SHARP difference band 86 (12.02 µm).
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Figure 5.15:   Histogram for CARD SHARP difference band 98 (12.52 µm).

Figure 5.16:   Change image for CARD SHARP difference band 98 (12.52 µm).
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The TBS proves to be an adequate measure of spectral change.  To better

understand the relationship of all bands in the change image, Figure 5.17 plots TBS

against wavelength.  A useful band with a highly discernable spectral feature would have

a TBS much higher than the random fluctuations in the other bands.  Note that 9.16 and

9.50 µm maintain their distinct feature but do not appreciably improve change detection.

Band 98 (12.52 µm), the atmospheric absorption band, has a much greater TBS than the

majority of the data.  This may be caused by contrast-enhancing effects created by the

water absorption and the moisture present in vegetation but absent in the camouflage.

Other absorption bands, at 9.77 and 13.50 µm appear to produce a similar effect.
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Figure 5.17:  Target-to-background separation for the CARD SHARP change image.

This plot indicates that there is no sufficient proof that spectral change

information is present and detectable in the CARD SHARP data.  Simple techniques,

such as differencing, are useful in identifying thermal change in these data but provide

little utility in detecting spectral change.  It is possible, however, that the most useful
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bands in detecting CC&D changes in a heavily vegetated environment are the

atmospheric absorption bands.

Further indication of the absence of spectral information in the CARD SHARP

data can be found by plotting the histograms simultaneously on a scatter plot.  Figure 5.18

depicts such a plot for bands 27 and 33 (chosen to include the 9.16 and 9.50 µm feature).

A color version of this figure is available in Appendix B.  The strong linear relationship

of the data represent the radiometric similarity of the two bands.  In other words, bright

pixels in band 27 are also bright in band 33.  Points plotted off axis from this linear

relationship behave differently in the two bands and may represent a spectral change.  The

highlighted points in Figure 5.18 represent the target pixels. A color version of this figure

is available in Appendix B.  Although, the points are clustered together, they do not

depart from the linear relationship.  This indicates that they are radiometrically different

from the background but not spectrally different.

Target Pixels

Figure 5.18:   A scatter plot for CARD SHARP difference band 27 (9.16 µm) and
band 33 (9.50 µm).



85

2. Spectral Angle

The spectral angle of the change vector was also studied.  The spectral angle result

was created from the dot product of the two images as described in Chapter 2.  Figure

5.19 presents the histogram of this change result.  This figure plainly demonstrates the

spectral blandness of the data.   The target pixels fall in the heaviest part of the

distribution.  The TBS of 0.27 means very little because areas of change will have a

higher spectral angle regardless of their position with respect to the background mean.

Two major change distributions are present in this result.  The forest makes up the

distribution to the left of the mean while the grass makes up the distribution to the right.

Therefore the grass appears to have changed the most. This is likely caused by a

difference in moisture on the two days.  (It had rained in the interval.)  The majority of

the target pixels fall within the change distribution for the forest which would make them

difficult to discern.  Without examining the change image, one can see that it would be

difficult to discern these targets.
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Figure 5.19:   Histogram for the CARD SHARP spectral angle result.

Figure 5.20 is the change image for the dot product.  The image has been

converted to spectral angle in degrees and displayed such that the darkest pixels have the

highest spectral angle.  The three U.S. vehicles and the T-72 are barely visible in the

image.  They are visible only because they are darker than their local background.  This

suggests that there is some difference between the vehicles and the surrounding

vegetation; however the change is minimal and many of the target pixels have spectral

angles between 0.35 and 0.50 which causes them to blend with the surrounding

vegetation.   For this result, spectral angle appears to provide marginal utility to the

change analysis.  This is likely due to the lack of spectral change.  Since the only

discernable spectral feature was available in the U.S. camouflage, it would make sense

that the only changes truly discernable in this result come from the U.S. vehicles.
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Figure 5.20:   Change image for the CARD SHARP spectral angle result.

C. CHANGE DETECTION: CAMP PENDLETON

1. Image Differencing

Similar change vector techniques were applied to the Camp Pendleton data.

Change images were obtained by subtracting Run 1 (obtained at 1000 on 10 December)

from Run 2 (obtained at 1400 on the same date).  Figure 5.21 depicts the result for band

51 (10.28 µm). A color version of this figure can be found in Appendix B.  The difference

image is busy and difficult to interpret.  Numerous misregistration errors make it difficult

to identify genuine changes.  By comparing all three images side-by-side, two changes

appear to stand out.  One appears to be the existence of a cool object in run 1 that is not

present in run 2 located to the right of the third warehouse (Change A).  The second is the

existence of a warm object in run 2 that is not present in run 1 located to the right of the

second warehouse (Change B).  Both changes appear as positive (bright) pixels in the

change image; however, they are still difficult to distinguish from the busy background.
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A

B

Figure 5.21:   Image differencing result for band 51 (10.28 µm) of the Camp Pendleton
data.  Two genuine changes are indicated at A and B.

Figure 5.22 examines the spectra of three pixels across change A in the vertical

direction. A color version of this figure is available in Appendix B.  While the change is

discernable in the image, it appears to be caused by an increase in temperature at that

location.  Note that the temperature of the second pixel is higher for run 2, but the

temperature of the two adjacent pixels is lower for run 2.  The spectra at all three pixels is

similar for run 1 and run 2 which suggests that new material has not been introduced at

this location.
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Change Result (9.06 µ m)
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Figure 5.22:   A sample of three spectra across change A in Figure 5.21.

Figure 5.23 is the histogram of difference band 51.  The black histogram

represents the pixels from the second change mentioned previously.  The TBS for this

change is less than one standard deviation and competes with a large portion of the

background (presumably due to registration errors).  In this case, it would seem that a

one-dimensional histogram is insufficient for describing the change and that TBS may not

be a useful measure in this context.
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Figure 5.23:   The histogram for difference band 51 of the Camp
Pendleton change vecotor.

If this change identifies the introduction of an object into the scene, its spectral

signature would likely be different from scene-to-scene and with respect to the

surrounding material.  Figure 5.24 illustrates five adjacent pixels across the horizontal

dimension. A color version of this figure is available in Appendix B.  The first two pixels

appear to be both spectrally and radiometrically similar from run 1 to run 2, and the last

pixel appears to be spectrally similar but radiometrically dissimilar.  The third and fourth

pixels are identified as change pixels Figure 5.21.  In both pixels, there is a broad spectral

feature at band 28 (9.06 µm) present in run 2 that is not present in run 1.  It is interesting

to note that this appears to be a similar spectral feature to that of the U.S. camouflage in

the CARD SHARP data.  It is likely that this is the same type of material (perhaps a

synthetic fabric).  A lack of ground truth for these data preclude confirmation.



91

Change Result (9.06µm)
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Figure 5.24:   A sample of five spectra across change B in Figure 5.21.
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Since a spectral feature is definitely present at band 28, it now makes sense to

compare bands 28 and 51 in a two-dimensional scatter plot.  Figure 5.25 shows a strong

linear relationship in the two difference bands, but two small groupings of pixels fall

below the background.  The leftmost cluster represents “spectral changes” caused by

gross misregistration.  The rightmost cluster represents the change of interest.  This

suggests that there is spectral change present at this location. A color version of Figure

5.25 is available in Appendix B.

Registration Errors

Change B

Figure 5.25:   The two-dimensional scatter plot comparing difference bands 28 and 51.

The spectral change is not readily discernable in the standard difference bands, but

it is discernable when comparing two bands that enhance the spectral feature.  Figure 5.25

explains why a one-dimensional histogram is inadequate in this case.  The change is

located at the center of the distribution when looking at the data from either band.
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However, the change is very discernable when both bands are included in the analysis and

the axes are rotated 45°.  Therefore a more useful change image could be obtained by

transforming these two difference bands into principal components.  Figure 5.26  displays

PC band 2 from a principal component transform of difference bands 28 and 51.  The

change is more readily identified in this change result. Figure 5.27 is the histogram for PC

band 2.  Rotating the axes improves the TBS by 730% (from 0.70 to 5.12).  The change

competes only with the registration errors.  An improved registration process would

further improve the change detection process.  Figure 5.28 is a scatter plot of the principal

component transform.  A color version of this figure can be found in Appendix B.  The

changes are now above the background distribution which allows them to be

distinguishable in PC band 2.

Registration
Errors

Registration
Errors

Change B

Figure 5.26:   The change result for the Camp Pendleton data using
the second principal component of the difference bands 28 and 51.
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Figure 5.27:   The histogram for the PCA result of the Camp Pendleton data.

Change A
Change B

Figure 5.28:   The principal component rotation of the scatter plot in Figure 5.25  The
change class are now at the top of the plot.
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2. Spectral Angle

A spectral angle result of the Camp Pendleton supply depot was obtained using

the dot product method previously discussed.  These results are displayed in Figure 5.29

and Figure 5.30.  Color versions of these figures can be found in Appendix B.  The left

image in both figures is the spectral angle result while the right image is a comparison of

run 1 and run 2 of band 54.  The spectral angle image uses a hue, saturation, and value

(HSV) color space to add a contextual dimension to the result.  The spectral angle is

described in hue (color) with violet being the lowest angle and red being the highest.

Radiance for band 51 is described in value (brightness) while saturation remained at a

constant maximum value throughout the result.  Therefore, any red pixel in the image is

associated with a high change in spectral angle regardless of its brightness.  The band

comparison uses complimentary colors (blue and yellow) to describe their relationship.

For example, a pixel with a high value in run 2 but a low value in run 1 will have a blue

tint while a pixel with a high value in run 1 but a low value in run 2 will have a yellow

tint.  Pixels that appear neutral will have the same value in both runs.

Again this result demonstrates the difficulty in distinguishing genuine change

from registration errors; however both changes previously discussed can be identified in

Figure 5.29 (available in color in Appendix B).  Change A, caused solely by thermal

differences, can be seen as a difference in radiance (brightness value) but has a low

spectral angle (hue).  This supports the previous assertion that spectral change did not

take place at this location.  Change B, which was associated with a spectral difference,

has a higher spectral angle indicated by its yellow hue.  For the Camp Pendleton data, the

spectral angle technique is sufficiently sensitive to detect spectral change which

demonstrates that familiar techniques can be applied to spectral thermal data.
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Figure 5.29:   Spectral angle result for the Camp Pendleton data.
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Figure 5.30:   A tighter view of Figure 5.29.
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3. Registration Errors and False Detections

To maintain radiometric integrity of the data, both roll correction and registration

used nearest neighbor operations.  This has the effect of “moving” a pixel to a new

position, but since a pixel cannot be moved a fraction of a step, roundoff errors were

introduced.  This is best illustrated using the dot product result of the supply depot.  At

first glance, it would appear that there are several changes (depicted as red in Appendix B

in Figure 5.29), but it quickly becomes obvious that detection along sharp edges (such as

building rooftops) are caused by registration error.  It is easy to identify and ignore false

detections caused by edges which leaves a small number of detections remaining.  It

would seem probable that these are true detections, but as demonstrated earlier, genuine

spectral changes are occurring at smaller spectral angles while pixels with larger spectral

angles appear still to be associated with registration errors.

Figure 5.31 can be used to further examine such a detection.  A color version of

this figure can be found in Appendix B.  The maximum detected change occurs near a

building and may be a large vehicle parked next to the building.  To examine the result

more closely, Figure 5.31 presents the spectra from three pixels.  It is obvious from the

plots that the spectra from the first pixel are nearly identical.  The same is true for the

spectra from the third pixel.  The second pixel, the maximum change, contains two

dissimilar spectra which would suggest the presence of spectral change; however, there is

a high degree of similarity between the spectrum in run 1 of pixel 2 and run 1 of pixel 3.

Likewise, spectral similarity exists between run 2 of pixel 1 and run 2 of pixel 2.  This

suggests that registration errors and not spectral change are the probable cause of this

detection.

This demonstrates that the largest spectral angles are mostly associated with false

detections since registration errors can have a dramatic effect on pixel dissimilarity.  Dai

and Khorram (1997) quantify the effects of misregistration on change detection.  With

respect to Landsat TM data, they determine that, in order to limit the change detection

error to less than 10%, it is necessary to register images to within one fifth of a pixel (a
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registration accuracy of 0.1934 pixel).  Changes of interest must then occur at lower

spectral angles.  Figure 5.32 illustrates such an example.  Note that the roof of the

warehouse is depicted as green.  This equates to a spectral angle of approximately three

degrees.  The surrounding pavement is depicted as cyan which equates to a spectral angle

of approximately two degrees.  In this case, the higher spectral angle is cause by a

decrease in rooftop temperature while the pavement temperature remains relatively

constant.  A color version of Figure 5.32 is included in Appendix B.

Registration errors caused primarily by the aerial platform from which the data

were collected confound the change analysis and make it difficult to interpret.  It is likely

that change detection will be more useful in analyzing data from a space-based platform

once one is available.
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Maximum Change Detect on SEBASS, MCAS Camp Pendleton
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Figure 5.31:   A sample of spectra from pixels that exhibit high
change in the spectral angle result.
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Change Detection on SEBASS, MCAS Camp Pendleton
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Figure 5.32:   A sample of pixels representing varying degrees of change
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VI. RESULTS

A. SEBASS INSTRUMENT AND DATA

SEBASS has demonstrated some utility in the LWIR for atemporal anomaly

detection (Collins, 1996 and Smith and Schwartz, 1997).  Collins (1996) was able to

discriminate camouflaged military vehicles in a desert environment using techniques

normally applied in the reflective portion of the spectrum.  Smith and Schwartz (1997)

applied similar techniques to an initial analysis of CARD SHARP data and successfully

detected uncamouflaged vehicles. Figure 4.2 not only depicts vehicle locations but

demonstrates that a single stretched band is sufficient in providing the same result, and

that the discriminating factor is thermal rather than spectral.  Later work by Schwartz, et

al (1997) concluded that anomaly detection in this environment can be done successfully.

The utility of LWIR spectral imagery for support to military operations (SMO) may be

somewhat limited since pronounced spectral features are not as prevalent in the emissive

regions than in the reflected regions.  This does not negate the need for a thermal spectral

system which enables night exploitation.

The CARD SHARP collect highlighted instrument inconsistencies which made

spectral change detection difficult.  Small variations in gain across the LWIR FPA made

it impossible to use hypercubes converted to apparent emissivity for spectral change

detection.  Without such a data set, spectral changes could not easily be isolated from

thermal changes.  Since thermal changes tend to overpower spectral changes, analysis of

the combined data was prohibitive.  SEBASS is undergoing continuous improvement in

these areas which should make apparent emissivity more reliable in the future.

B. EVALUATION OF SPECTRAL CHANGE TECHNIQUES

Consideration of advanced spectral change detection methods was eliminated

from the study based on the low quality of both sets of data.  Instead, an in-depth

characterization of thermal spectral change was more relevant.  The techniques used in
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this study required a high degree of a priori knowledge to sufficiently explore the

feasability of thermal spectral change detection.  In order to properly employ these

techniques, information about target position must be available.  This is not an

unreasonable assumption as anomaly detection can provide that information and could

lead to the development of a target history for a given area.  Essentially, change detection

is the detection of new anomalies not present in the target history.

The target-to-background separation (TBS) proved to be a useful measure of

spectral change as long as the targets could be identified prior to analysis.  By tracking the

TBS at every wavelength, it became easy to identify which bands were spectrally

significant for a given change.  This could aid in selecting the appropriate bands to be

used for visual (spatial) discrimination.  The spectral features observed in the CARD

SHARP data were on the order of one percent of the total observed radiance; however,

this was not substantially above the observed noise.  Even though the NESR was 0.1

µflicks, thermal fluctuations, registration errors, and gain inconsistencies dramatically

reduce the SNR.

Once spectrally significant bands were identified, 2-D scatter plots were useful in

classifying the type of spectral change and descriminating spectral from thermal change.

The comparison of change A (thermal) to change B (spectral) in the Camp Pendleton

supply depot is an excellent example of this technique’s sensitivity to spectral differences.

Although the object at change B showed no appreciable change in temperature that could

be detected in a one-dimensional histogram, it was very discernable using a scatter plot of

two significant bands.  It is also important to note, however, that change B occurred

where there was no target history.  The scatter plot helped to identify it as a potential

target before TBS could be used as a measure of spectral dissimilarity.

TBS was not inappropriate in the case of the Camp Pendleton data as long as it

was correctly applied.  Applying TBS to individual bands provided little additional

information, but applying it to the most discernable principal component of several

spectrally significant bands improved change detection by more than 700% increasing the

SNR by more than a factor of five.  Registration errors still overpower genuine changes
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and preclude practical use of these techniques until such errors can be reduced to

manageable levels.

The spectral angle technique was effective in isolating spectral changes.  The

spectral angle comparison of change A and change B in the Camp Pendleton data proved

that subtle spectral change could be discerned from thermal change.  The thermal

difference in the two runs at change A of the Camp Pendleton supply depot scene

increased radiance by 10% while the spectral difference at change B increased radiance

by only 5%, yet the difference in spectral angle between the two changes was

approximately 2° - a difference of 40% in favor of the spectral change.  This suggests that

spectral angle will be a useful tool for change analysis.

C. THE UTILITY OF THERMAL DATA FOR CHANGE DETECTION

Because an object’s temperature can confound spectral analysis, using thermal

hyperspectral data for change detection may not be the preferred method for most

applications.  However, the findings in this study prove that thermal spectral change

detection is possible.

Monitoring most military operations with thermal hyperspectral imagery comes

with limitation.  Pertaining to CC&D, there are few spectral features available for

exploitation in the LWIR region.  Most healthy vegetation acts as a blackbody from 8 to

14 µm.  The woodland camouflage used in CARD SHARP acted in a similar manner with

only one minor spectral feature at 9.16 µm in the U.S. camouflage.  The thermal inertia of

the uncamouflaged tanks varied greatly from the backgound which provided the primary

input for the change detection.  The Camp Pendleton data provided a spectrally rich

environment suggesting that thermal hyperspectral data may be more useful in an

industrial environment.  It is unclear at this time if relfective spectral change detection

would provide better results; however, reflective sensors are useless at night thus

maintaining the need for the same capability in the LWIR region.
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D. REQUIREMENTS FOR IMPROVED CHANGE DETECTION

This study indicates that spectral change detection could be useful, but further

improvements must be made before an imagery analyst could employ such techniques.  It

is difficult to quantify current registration accuracy considering that future platforms will

likely be space-based hopefully eliminating the introduction of attitude errors.  The

problem would then be similar to that already encountered with Landsat multispectral

imagery.  The 0.1934 pixel registration accuracy requirement for TM (Dia and Khorram,

1997) may be sufficient; however, the push to conduct subpixel analysis may be more

restrictive.

The NESR for SEBASS is typically less than 1.0 µflick which equates to a SNR

of greater than 800; however most thermal signatures are within one percent of the total

signal.  In order to accurately detect a one-percent signature, the signature-to-noise ratio

must be at least 10 thus requiring a SNR on the order of 104.  This was evident in the

CARD SHARP data where it was extremely difficult to identify small spectral variations

in a heavily vegetated area.  Larger spectral changes were present in the Camp Pendleton

data.  Ignoring thermal fluctuations and registration errors, a 40 µflick spectral change

was detectable.  This equates to a signature-to-noise ratio of 40.  The spectral change in

these data would have been an easily discernable signature if it were not for the high

number of false detections.  Registration errors and thermal changes overpowered the

spectral changes reducing the SNR from 40 to 0.5 which emphasizes the importance of

isolating emissive spectra independent of temperature and of reducing errors caused by

misregistration.  Therefore, external errors have the greatest impact on the effectiveness

of change detection, but NESR must further be reduced in order to detect even smaller

changes.
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VII. CONCLUSION

This study indicates that detection of thermal spectral change is possible given

that spectral features are available and the data are relatively free of thermal and

registration-induced noise.  With a great deal of effort, spectral change was isolated in

both the CARD SHARP and Camp Pendleton data.  The use of TBS, scatter plots, and

PCA on selected difference bands were effective analysis tools in detecting and

identifying change.  However, analyses of these data were complicated by the

confounding effects of temperature and the high number of false spectral changes

detected due to registration errors.  Producing an accurate and reliable emissive data set

and improving the registration process will greatly affect interpretability to the point were

imagery analysts may find hyperspectral change detection a useful tool.

Before this can be done, many small steps must be taken to improve the quality of

the imagery and the reliability of the techniques.  All hyperspectral sensors must continue

to improve in terms of SNR, reliability, and overall data quality.  Further study is required

to determine where the point of diminishing returns exists for various measures of image

quality with regard to the most sensitive change detection techniques.  Also, further study

is required in the analysis of emissive spectra independent of temperature.  For various

reasons, the data in this study did not produce reliable emissivity images.  Once image

and calibration data are available to this end, a comparison of results between temperature

dependent and independent data would be useful to determine the need for strictly

emissive spectra.

In the end, this study has provided useful insight into the sensitivity of simple

change detection methods for discriminating small spectral changes.  While the data,

provided the worst case scenario, it was still possible to make an acceptable

identification.  Future research on higher quality data sets should further support this

finding.
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APPENDIX A. HYPERSPECTRAL ANALYSIS TECHNIQUES (STEFANOU,
1997)

Technique
A Priori 

Knowledge
Purpose Operation Result

Principal 
Components 
Analysis (PCA)

None
Image enhancement by transforming orginal pixel 

vector into a new vector with uncorrelated 
components ordered by variance.

Uses the eigenvectors of the image covariance 
matrix to assemble a unitary transformation 

matrix.  When applied, this matrix creates l-band 
PC image with the most significant PC bands 

first.

Useful for descriminaton but not in identifying 
target spectra.

Maximum Noise 
Fraction (MNF)

None
Same as PCA but orders PC bands by image 

quality.

Measure noise fraction as noice variance divided 
by signal variance.  Noise variance is estimated 

from a uniform observed background.  The 
eigenvectors of the resulting matrix are applied to 

the image to obtain the MNF transform. 

Useful for descriminaton but not in identifying 
target spectra.

Standardized 
Principal 
Components 
Analysis (SPCA)

None Removes unequal SNR in all PC bands.

Normalizes the variances of all PC bands to 
unity.  This accounts for uneven individual-band 
SNR.  Therefore, each band contributes equal 

weight to the analysis.

The image quality of each PC band is improved 
significantly - especially in the higher bands.

Simultaneous 
Diagonalization

Scene 
Endmember 

Spectra

Produces a single-band image which contains 
abundance information of a particular target 

spectrum in every pixel.

Performs linear filtering on the hypercube to 
obtain a new image in which the original pixel 

vectors have been transformed by a filter vector 
which represents the desired endmember.

Single-band image results vary based on noise 
assumptions (see OSP and LSOSP).

Orthogonal 
Subspace 
Projection (OSP)

Scene 
Endmember 

Spectra

Same as SD Filter; however, the additive noise is 
assumed to be zero.

Applies a least sqaures orthogonal complement 
projector and then maximizes the SNR via a 

matched filter.

Some undesired enmembers may be 
emphasized over the target endmember.  Target 
spectrum must be in greater than 5% abundance.

Least Squares 
OSP

Scene 
Endmember 

Spectra

Reduces the effects of noise on OSP by using a 
least squares estimate of the noise thus 

converting the a priori model to an a posteriori 
model.

Decomposes the observations space into a 
signature and noise space and projects the 

observations into a signature space.  Then OSP 
is used to eliminate undesisred signatures.

The improved SNR aids in better descriminating 
the target endmember.

Filter Vector 
Algorithm (FVA)

Scene 
Endmember 

Spectra

Assuming linear endmember mixing, this 
algorithm attempts to demix the scene. 

Relative abundances of each endmember in a 
pixel is determined by taking the inner product of 
a matched filter vector (designed for endmember 

abundance) with the observed pixel vector.

Low Probability of 
Detection (LPD)

Target 
Spectra

If a target spectrum occurs in the image with a 
low probability (subpixel level), undesired 

signatures can be estimated directly from the 
data and eliminated.

A linear mixing model is used where the desired 
endmember abundance is set to zero in order to 

estimate the contribution of undesired 
endmembers.  The undesired signatures are 
removed using an orthogonal complement 

projector operator leaving a single-band image 
representing relative abundances of the desired 

endmember.

The algorithm properly supresses the backgound 
in low-abundance scenes, but produces poor 

results when applied to high-abundance scenes.

Constrained 
Energy 
Minimization 
(CEM)

Target 
Spectra

Relaxes LPD constraint of low target abundance.

Uses beam forming to deterimine a filter vector 
that produces single-band image representing a 
weighted sum of the responses at each of the 

spectral bands within the observed pixel vector.

Sucessful target detection appears to depend on 
the target spectrum used.  CEM operators with 

less variablity produce better target 
descrimination in the output image which 

depends only on the behavoir of the target pixel 
vector.

MUSIC-Based 
Endmember 
Identification

Reference 
Spectra 

(Laboratory)

Employs the use of known "pure" reference 
spectra to compare with mixed pixels for 

endmember identification.

First uses a noise-whitened covariance matrix to 
determine the number of distinct spectral 

signatures.  Then forms an orthogonal subspace 
to all linear combinations of spectral signatures in 

the scene using principal eigenvectors.  Then 
applies a noise subspace projection operator to a 
spectral library in order to identify endmembers.

Identifies pixels containing target endmembers.

Partial Unmixing
Reference 

Spectra 
(Laboratory)

Reduces the dimensionality of the observations 
by identifying the spectral bands on which the 
spectral reflectance is functionally dependent.

Using MNF, the intrinsic dimensionality of the 
data is determined.  The observed spectra are 
projected onto the principal axes of the most 

significant eigenvectors.

Identifies pixels containing target endmembers.

Spectral Angle 
Mapper (SAM)

Reference 
Spectra 

(Laboratory)

Determines the spectral similarity betweena 
reference spectrum and a spectra found at the 

pixel of an image.

Calculates an angular difference, in radians, 
between an observed pixel vector and a vector 
that represents the reference spectrum.  The 
smaller the angle, the closer the match to the 

reference spectrum.

Produces a single band image where the lowest 
values in the image represent the closest 

matches to the target spectrum.
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APPENDIX B.  COLOR FIGURES

Figure 2.1:  A subset of two Landsat TM images of Boulder,
Colorado are used as examples in this chapter.
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7-Class Composite (From 12 Image)

Class 7

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 3

Figure 2.21:  Direct multidate classification.  The right side is a
breakout of the various classes.  Classes 3 and 7 contain change

information.
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Figure 2.22:  A scatter plot of three classes.
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SEBASS Field of View

Figure 4.1:  Site layout at Redstone Arsenal (from Smith and
Schwartz, 1997).
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Distribution Van

Figure 4.2:   Vehicle positions in the CARD SHARP field of view.
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Figure 4.3:  The M1E1 Abrams MBT positioned at site S1 with
woodland camouflage.

Figure 4.4:  The M1E1 Abrams MBT positioned at site S1 without
camouflage.
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Figure 4.5:  A composite image consisting of Landsat TM (bands
1, 2, and 3), a color aerial photograph mosaic, and  the two

SEBASS images used for this study.
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M-60 Spectra
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Figure 5.4:  Ground truth spectra acquired during CARD SHARP
for the M-60A MBT.

CARD SHARP Difference Spectra 
(11 October minus 10 October)
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Figure 5.5:  A variety of difference spectra produced by subtracting the
spectrum at a given pixel location in the 10 October image from the spectrum

at the same pixel location in the 11 October image.
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M-60 Ground Truth and Real Data
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Figure 5.7:  A comparison of SEBASS and ground truth difference
data for the M-60A MBT with and without camouflage.

Target Pixels

Figure 5.18:   A scatter plot for CARD SHARP difference band 27 (9.16 µm) and
band 33 (9.50 µm).
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A

B

Figure 5.21:   Image differencing result for band 51 (10.28 µm) of the Camp Pendleton
data.  Two genuine changes are indicated at A and B.
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Change Result (9.06 µm)
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Figure 5.22:   A sample of three spectra across change A in Figure 5.21.
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Change Result (9.06µm)
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Figure 5.24:   A sample of five spectra across change B in Figure 5.21.
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Registration Errors

Change B

Figure 5.25:   The two-dimensional scatter plot comparing
difference bands 28 and 51.
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Change A
Change B

Figure 5.28:   The principal component rotation of the scatter plot in Figure 5.25  The
change class are now at the top of the plot.
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Figure 5.29:   Spectral angle result for the Camp Pendleton data.
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Figure 5.30:   A tighter view of Figure 5.29.
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Maximum Change Detect on SEBASS, MCAS Camp Pendleton
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Figure 5.31:   A sample of spectra from pixels that exhibit high
change in the spectral angle result.
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Change Detection on SEBASS, MCAS Camp Pendleton
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Figure 5.32:   A sample of pixels representing varying degrees of change.
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